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Invited Paper

Theory of Second Harmonic Generation in presence of
Diffraction, Beam Walk-Off and Pump Depletion

Shekhar Guha and Leonel P. Gonzalez
Materials and Manufacturing Directorate
Air Force Research Laboratory
Wright Patterson Air Force Base, Ohio 45433-7702
email: shekhar.guha@wpafh.af mil

ABSTRACT

Integral expressions for the pump and generated fields are presented here for the case of second harmonic
generation of a focused Gaussian pump beam incident on a nonlinear crvstal . The birefringent walk-off of the
generated beam and the effect of pumnp depletion are included in the theory.

1. INTRODUCTION

The theory of second harmonic generation (SHG) of a focused Gaussian beam in the presence of beam walk-off
presented by Boyd and Kleinman'' has been widely used in the nonlinear optics community. A limitation of
their method is the exclusion of pump depletion which makes it inapplicable to the case of high conversion
efficiency. The numerical method developed by Smith @ and recent work by Wang and Weiner @ and by
Kasamatsu, Kubomura and Kan *) extend the theory of Boyd and Kleinman to include the effect of pump
depletion. We present here an alternate technigue to caleulate the spatial distribution of the pump and the SHG
fields in presence of diffraction, linear absorption, phase mismatch, beam walk-off and pump depletion. The
field distributions are expressed as multiple integrals, which are considerably simplified for the case of collimated
beams, i.e., when the spread of the pump beam due to diffraction inside the crystal can be ignored. This is often
the vase when high peak power pulsed lasers are used as pump beams because the pump is intentionally kept
collimated through the nonlinear optical medivm to avoid damage to the material.

In the theory presented here the incident pump beam is assumed to be focused at the erystal center - this
restriction can be easily removed later. The aim of this work is to describe the general approach taken and
to provide expressions for the electric fields expanded up to fifth power in the second-order nonlinear optical
coefficient, d. The method described here is an extension of an early work on optical parametric oscillation
(OPO)™ and can be readily applied to other nonlinear optical processes of current interest, such as pump
resonant SRO or resonant second harmonic generation (SHG). As pointed out in ref 3, the Green'’s function
method is easily extended to the time dependent case as well. However, a limitation of the perturbative approach
used here is that multiple integrals need to be evaluated, which becomes computationally time consuming when
six, eight or higher dimensional integrals are imvolved.

In the following sections, the derivation of the relevant wave equations is provided first, to set up the starting
equations. Then, the Green's function method of solution in terms of a power series in the nonlinear coefficient
is described, and the expressions for the pump and the SHG beam electric fields are evaluated for a few terms.

2. THE STARTING EQUATIONS:

The notations for electric fields and nonlinear polarizations used here will generally follow the convention adopted
in the Handbook of Nonlinear Optics'® (using the 51 system of units). The subscripts p and s denote the pump
and the SHG fields, respectively. The fields are assumed to be linearly polarized, and only the scalar components
of the electric fields are considered in the nonlinear interaction. The equation 16.4.5 in Quantum Flectronics'™
is taken as the starting point of the analysis here:

8°E a°

a JE 2
v E—;E{jﬂ'ﬁ +HQEE+#UEPNL (1)
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The electric felds at the pump and the SHG frequencies (wp and w,, respectively) are written as

E“(r,t) = Ey(r)e ™ + re (2
E“(r,t) = E,{r)e ™" + o (3)

and the total nonlinear polarization as
Pyi(r,t) = (P (c)e™" + cc) + (P (r)e™™ " + ec) (4)

Following ref. 6 (chapter 2) we assume that the nonlinear polarization terms at the pump and the SHG frequencies
can be written as

Pyelr) = 4deo Ey(r) E; (r) (5)

Pz (r) = 2deg Ep(r)? (6)

Inserting equations 2,3,4,5 and 6 in equation 1, and collecting terms oscillating at frequencies arp and o, we
obtain,

(V2 + k3, }Ep(r) = —pugup PRm(r) (v
(V2 + k2, ) Ea(r) = —puow? P (1) ' (8)

where
.li:gL = k:i + il g, kﬁl = k2 + iwy oo, (9

)
In the above, it has been assumed that in equation 1, e, . = *'U“i.s and that the wavevectors are kp , = ny swp o /€
where n, and n. denote the refractive indices of the medium at the two frequencies.

3. GREEN'S FUNCTION SOLUTION

The solution te the inhemogenecus differential equations 7 and 8 above is obtained using the Green's function
method: g

. w2 pthpy Hp
Ep(r;:_”jj /.:er”' P () (10)
- A
a ik By
Eur) = -5 [ar P (1)
d e

where f, and R, denote the magnitudes of the displacement vectors connecting the points ©f and r for the pump
and the SHG fields, respectively, The pump beam is assumed to propagate in the medium as an ordinary wave,
=0 that

Ry = |r—v'|
= ViE-2P+y-yP+(z- 2P (12)

If the SHG Beld propagates through the nonlinear crystal as an extraordinary wave, say with a walk-off angle
denated by g, and if the Cartesian coordinates are chosen such that the propagation vector of the SHG field lies
in the x, = plane and is at angle p with the z axis, we have (1

Ro={z—pz)— (@~ p2 )P+ ly=y'P + (- 2') (13)

For small absorption, equation 11 can be re-written as:

kpy Ehy+922 ky, Mk, 4 ‘i% (14)

where ap . = 7/ tin/ep o denote the the linear absorption coefficients. The Fresnel approximation

By (2= )+ gl =) + (v - ¥?) (15)
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and y
Ro=(z—2)+ m{ha T I'F}E +{y— ?ul"}z} (16}

iz used in the exponents, with r, = z — p(z — ') and the approximation R, , R, = (z — 2') is used in the
dencrinators. Equations 10 and 11 then reduce to

Ey(r) = Fi: / dxz iy’zdzf
Eik,iz—z'?—fff*-*'?*w%r{{"I'f:'{"_”']g}?;‘jr_(r’) (17)
and
E(r) = o Lt
th{z_zr:l_-_-ﬁ._,:,_:r}.fr:’:a‘,_j{.:r —#' ) {y—1") }-_pu. - (1) (18)

The incident pump beam is assumed to have Gaussian cross-sections and to be focused at the center of a nonlinear
medium of length [, Assuming the origin of the coordinate system to be at the incident face of the medium, the
amplitude Epu}(l‘]- of the incident pump field can be written as

‘ E, 3 : i
E;:':ﬁ] [r:] = _.1 - ‘)i[zPD E}Jllrb eﬂ:pz—a:,,z.u"EE—[Il_yzll,-{ugp[l;,-ﬂu:z- L1/} (19}
2 = 35)/Up

where b, = kpwﬁp denotes the confocdl parameter. In the first order approximation, ie., when pump depletion is
ignored, it is assumed that the pump field E, remains equal to E{u], a nonlinear polarization at frequency w, is
generated through equation 6, which gives rises to an electric field {dEm; at frequency w, through equation 11,
This generated SHG field interacts with the pump field E‘" to generate a nonlinear polarization through equation
3, which generates [through equation 10} a component uf the electric field at the pump frequency (denoted by,

say, d‘zEé. }j Following this procedure, a series of SHG and pump field terms, respectively odd and even powered
in d, can be obtained. That is, in general, the SHG and the pump fields can be written as

E,=dE" + PEP® + & E . .. (20
E,=E" + FE® + *E + °E® . (21)

Substituting these series in the equations 5 and 6, the nonlinear polarization terms can also be expanded in

power series in d:

sill Pl L]

Pt N + P +Par .- (22)
P = P’" +Phy +Php ... (23)

where 5 ,
PyL = 2do EY (24)
Pi = 46 EDER (25)
Piy = 2d%(ER + 2E0 ED) (26)

and

P L o MEEQE{IJ E[n:' {(27)
Py = Ad'e(EMED” + EMED") (28)
Phy = AP EPEY” + EWER” + EVEWX") (29)
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Using equations 19 and 24, and substituting in 18, the first term on the right hand side of eqn. 20 can be
determined. Using this expression for dE'" and eqn. 19 in eqn. 27, the 2EL term in eqn. 21 can be evaluated
from eqn. 17. With this d'EEf,_?] and the E; from eqn. 19 substituted in eqn. 23, equation 17 can be used for the
evaluation of the d®EL" term in Eqn. 20, and so on. Before embarking on the explicit determination of each of

these terms, in the next section several parameters are defined, and a new notation is introduced which allows
all the spatial integrations to be performed in dimensionless units.

3.1. Notation

The parameter £, = I /b, where | denotes the length of the nonlinear medium is used to characterize the amount
of focusing of the pump beam. The phase mismatch between the nonlinear polarization beam and the generated
SHG wave is denoted by

Ak = 2k, — k.. (30)
Similarly, the mismatch in linear absorption between the nonlinear polarization and the SHG beam is proportional
to

Ao = ap — /2. (31)

In addition, the following parameters are defined;

P=zfwep (=yfwep t=3z/l (32)

m= Trflwep N1 = infr,"l"-"-"ap ty = zf}"f [33)
i

Po = In."rt"-'np W, = .ﬁ'!.."rw{)p (34)

where W is a dimensionless parameter which provides a measure of the amount of walk-off of the SHG wave as
it propagates through the crystal. Also, defining the variables a, and d,(t) as

ap =1 — i,
dy(t) = ap + 2ilyt

(33)
the incident pump field can be expressed as:
E i 2, 3 .
ElD) — TP ikplt—agitfd —(pt+e® ) di () )
5 (E) 3 me £ (36)
(37}

4. THE EXPRESSIONS FOR THE ELECTRIC FIELD TERMS
4.1. The first order SHG field term

Using Eqns. 18,19 and 24, the first order signal field term dEf;” is obtained (after integrating over the transverse
coordinates):

dE{M (r) = kEgo fiV(x) (38)
e 2imdl E.
WL i i (39)
Al
and
i i ifﬂ.k—ﬂu}tt1€—ipnz—q:jd—z—nl:T_r_]
(1/p Eellk,—n,l.-'Q_;..!tf di ] ] - "
i g dy (t1)da(t, 1) (40)
Here po = p — Wi(t — t1). The function da(t, 1) is defined as
dalt, ty) = di(t1) + 2ikE(t = 1), (41)

where k = 2k, /k;.

Proc. of SPIE Vol. 6455 64550W-4
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4.2, The second order pump field term

Using Eqns 38,19, 27 and 17, the second order pump field term afz.EE"' can be obtained (after integrating over
the transverse coordinates):

Thg .
FENE) =~ [ [ 124 (42)
where
féﬂ} |:I'} = E[i.\.'r.—ul-_,.."E]Ez fz dhei—iﬁk—a”‘ﬂ]itl
0
® fh dizel;—i&k—ﬁn}fts
]
. (5% +q%ag+2phy+e3 '3)
4
dy (ta)da(f, 1, t2, ta ta) :
with da(t1,ta)
i e Sy 44
ae(t,ty, 2) dy(t, 1, ta) .
dafti)*
St = 2W(fH — te)————, 45
balt, by, ta) 1t ‘t}l:&{t.tl.fz} (45]
and Bl ]‘
. .2 3, daalf fg
sty 2} = — 1y — —— 46
caltitn,ta) = —2W(ts — ta)*(= 2 (48)
Other functions used above are defined as
doo(t, t1) = di(t1)” + 2i6,(t — 1) (47)
dalt1 ta) = dalty ta) + 2d1(d1)" (48)
dyib by, e} = dy(t1) delty, £2) + 2, (t — g }da(ty, 1a) (49)

4.3. The third order SHG field term

Using Eqns. 19, 42, 25 and 18, the third order SHG field term d®E." can be obtained (after integrating over
the transverse coordinates):

1 Tty.a [
SEO) = -2k |5 10 0) (50)
o
where
L
fA = e{ik,—u._,l".!]{:f dty elik—Balit
0
p fh dtpel— k=0, /Dty ft!dtae{iﬂk—&u]!t;
] [
E_{Pnz—"n'i]ﬂri' Zpabytoy 51
41 (7)ot 1. ta) 8
where s )
t1,t3,t3 x
5 AT Yt Tt LT 2
ﬂﬂ[. ! 2:I dﬁ{tltls:’Z:taj. [J }
dy (ta)dy{ty) ’
)= Wy =)ot " (5
By(f.t1,ta) 1{ta ta]dﬁ(t,h:ﬁz,l:;} (53]

Proc. of SPIE Vol. 6455 64550W-5
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anc

es(t, b1, t2) = Wil(ty — ts;'zd,,{c, tlﬂ;&i}:if: o (54)

with
dylty, B2, ts) = da(ty ta, t5) + dy(t:)da(ta, t3) (33)
dglt,tr. ta, ts) = dy [ty )da(t, ta, ts) + ikEp(f — t1)ds(ty, ta) (56)

and
qult,tr,ta,ts) = kL (t — t)d1(t))da(ta)™ — 2daalty, ta)da(t, b1, ta, ts) (57)

4.4. The fourth order pump field terms

Using Eqns. 38, 42, 50 and 19 in 28 and 17, the fourth order pump field term d“f.‘;:,‘" is obtained as a sum of two
terms ET"E;?] and d“E;(;:':

] n
EE () = A2 | 5[ Bpofl(r) (58)
fia 4

dEga (1) = (320 | & |* Epayg () (59)

The expressions for f;:} and fﬁ;j are given in the next two subsections.

4
4.4.1. f} i
£ 1
fﬁj{f]‘ = E(iirp—r::,,-'E]rtf dilet—iak—a,fﬁ]itl ]t dtzf[iﬂ.k—&u]!tg
i i

tx ta
w f d‘tgf[_"ik_a"'m]“‘l f d!4€[Lak—.ﬁa}ﬂtq
o . o

e~ (P +a® lagr+2pbys +oan

i)
dy(ty)ds(t ty, fa, ta, ta) )
where ‘ do )
t1,ta, 13,84
sl iyttt st el 61
a1(t, t1, 0, ta. 4] R (61)
dy(ty) " golty. to, f3,t4)
by (£, £, 10,15, 84) = W : A G2
a1 (8. 81 ta, T, Ty) 1 dalt o2 ta. ta) (62)
and
et 1, ta, ta, ta) = Wi{galts, ta, ta, ta) + galt 21, 2, 3. 24) } (83)
with
galt1ta,ta.ta) = (4 — to)ds(ta, ts,8a) — 2(ta — ta)dy(t3) d (t2) (64)
Gun (b1 fa, ta, by)
T o O ot L ] 65
galta,t2,ts, o) gzg(f, ta, ta, ts) (65)
Ganlt by, to g, ty)
tty,tedg ty) = —/0 ———— i
galtita, 2, b, ) Gaall. by, ta, ta, £4) e
ganltita,tata) = (ts = ta) a1(ts,ta, s, ta)
—(t1 — t2) da(ta, ta, ta)ds(te, t3, ta) (67)
gadlty, ta ta ta) = dalta, ts, tadde(ty. ta, ta. g} (68)
Gan(t, by, ta, B3, te) = 26600t — t1)dy (t1)" g2(t1, E2, E2, t3)° (69)

.
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Gaally, fa, ta. ta) = dglty, te, £, ta)ds (B, B, 22, ts, da ).

The functions dy and dy are given by

and

4.4.2. fijl

where

and

with

dy(t1,ta ta, 8a) = dalty, . s, ta) + dy(ty ) ds(ta, ta, t4)

dglty, fa, 3, tq) = dy(f1) dalty, Lo, ta, ta) + 20EL[E — £ )d7 (b, ta, £3, 1)

i &
ji"j{r} 5 Eii.l:,.—a,_.-'z].!:f Iitle{—i:lk—n‘,_.l'ﬂ:n!tlfldtﬂeii.’.‘.k—ﬁn‘]!tz
0 o

TL H
w f draefté.k—u,l.l'ﬂ-!:a/ adtde(—iak—&uj!t.q
] 0
e—(0* + 0" Jaaa - 2pbas+rax

dy(ta)ds(t, 1y, ta, ta, t4)

dolty. ta, f3,ty)
diolt,ty, ta, by, 1q)
d ()" gslt1, ta, ts. 2'4']

dholt, 1, ta, ts fa)

agz(t. i1, ta, 13, 14)

ban(#, 81, te, £3,14) = WY

caz(t b1, ta, ts, ta) = Wiga(ty, ta, 3, ta)
gslt1,ta ta, ta) = 2ty — ta)dal(ts, fs, 04)" + 2(t3 — taddan (1. ) dalti. tz)

RifL(t — 1 )gs(ty, ta, ta, 14)°
dalty, ta)dy(ty, ta, ta)=din(t, by, ta, ta, t4)
2t - ta)? _ 2(ta— ta) dar(ty, )"
dafty, ta) dalty, ts,ta)"

gelt iy, fa,ts, 1) =

The functions dy and dyg are given by

and

dal{ty,to, ta, ta) = 2ady(ty, ta, t4)" + da(ty, ia)da(ts, ta)®

I:!:llll{t: t1,tz, 13, i-d:' — I5|!2|:r1| tjjlqu{il,i-:g, idjs o Etl'ip{t o il}d’ﬁ[til t91r3!t4}

4.5. The fifth order SHG field term

Using Eqns 42, 58, 59 and 19 in 26 and 18, the fifth order pump field term d®E{" is obtained as a sum of three
terms d°E'"/ dE‘E[S} and dsﬁfi’:

and

FEP () = l: ]“»cw‘Epn SEL
dES (r) = |: i | 5 |2 B f8(r)

3 Mg .
CEJE) =22 |k [ BofDE)

(A}

where the expressions for the terms £, fm and _iF[ﬁ" are given below:
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461 7

ﬂ?] I:r:I Ee{ak,—a.ﬁs]u[ dtlf[:&k—ﬂa}kl
i}

1 tz
- f dtyel—iak—a. 2t [ dtgeli8k—Aality
I o

! . ) ta
w f diiel:—zﬂk—n,.fE]fzdf dtﬁe[iﬁk—ﬂn}ﬂs
0 a
E—[Pa2—¢2 Jas1+2pabag+oa

®
dy{ta)dy(ts)dyait, ty, f2, ta, e, 85)

where
dyy(ty,da, ts 1, 15)
by de, g, ty) = 1
aa(titas tayts, ) dya(t by, fa, b3, 14, 15)
B arity, b, fa, 14, 85)
bey (8, 8y, ta, ta, 4} = W ,
s1(f, 81, ta, 3, 84} L 12t 0, b2 o, bafa)
and
t1 e, by, te. tn)2dhan [, £1, ta, ta, ta, ts)
es1(B.ty, b, i, ¢ sz.?s{l 20, Ly by )T Mg |, T, B, Ty T
518,81, ta, b, dy) 144 P P VT
—golty, ta, tz, tq, 5]}
with
grita,de tata ds) = 2tz — fa)dy(a) du(ty, ta. ts)
+ 2t —t5)d1 () da(tr, ta. ts)
dy(fa)” dilta)*
f1,02. 89, bq.05) = 20(fg —tg)——————— + 2ty — 15—
galt1,ta, ta, ta,t5) = 2(ta s}d.g{t:,l‘z_.ia—'_ (ta S}it{h\imﬁa:l
i dgy (1, t2) o daylty, ty)
tista ta te, t5) = 2in — £3) P ———mi2l L O, — )P
gulty, te, tg, ta, ds) = 2tz — tg) T I (g3 —tg) dits e te)

The functions dy; and d; are given by
dip{t1tz, fa, ta) = dalla, ta)da (e, ta, 85) + dalfa, ts)da(t, 22, )
and

dizlt,tr tata ta) = dylty, to. fa)dy(t, ta. t5)
thfp(t —t1)da1(ts, ta, ta, ta. 15}

4.5.2. &
l:B] - ; .
_iF,;j (r_] = Ei1k,—n,.."2}|!t dtleilﬁk—;‘hn]h‘

ty t
xf rﬁzef—a-ﬂk—u.;'z}.!tg[adiaﬂtiﬂk—&n]!:;
o o

§ ¢
)(fadtle{--i.ﬁ.k—mﬂ}!tqfidiaeiidk—a&”].!t,
o [

g—iPuﬂ—iﬂ‘:ﬁﬂa:—EP&ﬁ;H‘"—'\;a
®
dilta)dy(ts)daz(t, t1, b, ta, ta. ts)
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where
dyalty, ta, iz, e, ts)
dralt, by, ta, by, fa, ts)’

di(t1)d(t2)"ga(ta, s, 4, t5)
d14[-!,i11t211‘3.~f4.ta]' .

agz(t by, fa, ta, 1) =

bsalt, f1, 10,85, t5) = WY

and

Wi*{gs(ta, ts, ta, ts) + galts, ta, ta, ta, 5)
ik€p(t — t1)da (b )dy (te)* " (ta, 3, ta, 15 )
dﬂ-[ﬁht?r:a: ta, f.‘_.::ldu.l:ll, ty,fg,ta, 84, iaj.

r:‘&g[t,thtﬂsﬁﬁnlt"}

4

}

The functions dyy and dy; are given by

ihalty te, ta, ta, ts) = dy(t1)dy(ta, ty, te, ts) + ds(ty, t2, ta, te, f5)

and

I."i]_.;_l:t,ﬁ]_,tg, 13, ﬁ_-h ts:l dj_ [il]d\al:fh tg, vf-a., t.ﬁ. ts}

ikEp(t — {1 )dialts, ta f3, ta ts)

L

U T a

: t
fig}{rjzecik.—a_;z;utf Iﬁm[iak LS
i
1 Lz
xf dtge[ t':lk—&.-f'-t]l!-zf itse[f.ik—"_‘.a]t:;
a b 0

-] . ty i
xf dt‘él&k—ﬂ:,f!]ihf dtﬁe[—;&k—ﬂ.ujlh
a a
— (922 Jnaa+2pa bra+
g—'#a"+q" Jass+2pabrategy

X
dylta)dy(fs)dialt, &1, ta, by, fa, t5)

where
ths{t1 ta, g tas ts)

gt t1, ta, Eg, ta.t5)
dy(t1)gs (f2. 1. ta, t5)
dis(t b1 ta, ta, taats)

ﬂﬁﬂ[t: ty,ta, g, t-'l:' =

Bralt, t1 ta ts, dq) = WY

and

le{ﬁsl:tle fa,tz tq,t5)
ikEp(t = t1)dy () ha(ts, t5, te. 15)°
diolty. te, ty, ta, teidislt, by fa, s, 2y, B ).

csalt. b1, 12, ts, fa)

}

The functions di5 and dyg are given by

gty ta, ta, ta,ts) = di(t1)da(te, ta, ts, ty) + din(ty, 2. £3, ta, 5)

diglt b1, ta, ta, ta ts) = e (t1)dao (1, te, Es, tas ts)
ikEp(t — 1 )di5(ts, ta, 83, ta, E5)
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5. CONCLUSIONS

Expressions for the pump and second harmonic fields are presented as series of terms in increasing powers of the
nonlinear optical coefficient. The effects of beam diffraction, linear absorption and beam walk-off are included,
An advantage of the method presented here over the widely used numerical method may lie in the increase in
the computation speed, especially in special cases. For example, in the case of a collimated pump beam, iLe., for
£p < 1, the single, double and triple integrals in the expressions for the fields reduce to analytical expressions
and the quadruple and quintuple integrals reduce to rmuch simpler integrals which can be rapidly evaluated using
standard computers. Alse, the method can be extended to the case of pump beams of arbitrary shape.
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